Diazoalkane-Nickel(0) Complexes

By SEI OTSUKA,* AKIRA NAKAMURA, TERUHISA KOYAMA, and YOSHITAKA TATSUNO (Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan)

Summary The preparation, characterisation, and thermal decomposition of a series of the title complexes are reported.

DIAZOALKANES (1) react with various metal complexes generally with the extrusion of dinitrogen;¹ some transitionmetal complexes containing the azine group (>C=N-N=C<) have been isolated.² However, discrete metal complexes containing (1) are as yet unknown. These complexes† may have an important bearing on metal carbenoid reactions.

We have prepared a series of diazoalkane complexes of nickel(0)[†] by routes shown below. The isocyanide complexes (**2a**—c) are very sensitive to air even in the crystalline state, but not very unstable thermally except for the cyclo-octa-1,5-diene complex (**2d**) whose extreme instability in solution prevented detailed characterization. The corresponding palladium complexes are even more unstable. (Diazofluorene)PdBu^t(NC)₂ readily decomposes above -20° in the solid state.

$$\left. \begin{array}{c} \operatorname{NiL1}_{a} \\ \operatorname{or} \\ \operatorname{Ni}(\operatorname{C_2H_4})\operatorname{L2}_{2} \end{array} \right\} \xrightarrow{(1)} (\operatorname{R_2CN_2})\operatorname{Ni}(\operatorname{L1} \operatorname{or} \operatorname{L2})_{2} \quad (2a-c), \, (3a,b)$$

$$\begin{array}{ccc} (1) & (R_2CN_2)Ni(cod) & (2d) \\ (R_2CN_2)NiL^2_2 & \xrightarrow{L^1} & (R_2CN_2)NiL^1L^2 & (4) \end{array}$$

	R₂C	Ľ۱	L^2	R_2	2	Lı	L^2
(2a)	fld	Bu ^t NC		(3a)	fld		$Ph_{3}P$
(2b	Ph ₂ C	Bu ^t NC		(3b)	Ph_2	с —	Ph_3P
(2 c)	$(NC)_2C$	Bu ^t NC		(4)	\mathbf{fld}	Bu ^t NC	$Ph_{3}P$
(2d)	fld	с	\mathbf{od}				

cod: cyclo-octa-1,5-diene; fld = fluorenylidene.

I.r. and ¹H n.m.r. spectra show that these Ni⁰ complexes are isostructural, and the ¹H n.m.r. spectra [(CD₃)₂CO] of

(2a and b) confirm their stoicheiometry and diamagnetic nature. The strong i.r. band in the 1480-1520 cm⁻¹ region [v (co-ordinated >C=N=N)] excludes a linear end-on co-ordination involving a lone pair on the terminal nitrogen, which would give rise to a peak at 2000-2200 cm^{-1} . Side-on co-ordination of the C=N=N system is likely. This i.r. frequency (1480-1520 cm⁻¹) decreases as the electron-releasing ability of the auxiliary ligand increases. The NC stretching vibrations of the isocyanide ligands³ in (2a) and (2b) are higher than that in the zerovalent parent compound, indicating electron withdrawal from metal to the diazoalkane ligand. The occurrence of the substitution reaction suggests that (1) co-ordinates to the metal without skeletal change. Thus, the original diazoalkane in (2a) is readily regenerated by reaction with oxygen or triphenylphosphine. The exact molecular structure is being investigated by X-ray analysis.

Thermal decomposition of (2a) in toluene at 100° gave a mixture of (5) (44%), (6) (10%), and (7) (23%). Under comparable conditions, diazofluorene and t-butyl isocyanide, in the absence of a metal complex, gave a small amount of the ketazine (6) only.

$$(R_2CN_2)Ni(CNBu^t)_2 \longrightarrow R_2C = C = N - Bu^t \quad (5)$$

$$R_2C = N - N = CR_2$$
 (6)

$$R_2C =$$
fluorenylidene R_2CHCN (7)

Cationic d^{10} metal complexes, e.g. $(1,5-C_8H_{12})$ AgNO₃ or $(1,5-C_8H_{12})$ CuCl, do not form an analogous complex stable enough to be isolated. On dropwise addition of diazofluorene into an equimolar quantity of these salts in benzene at 20°, bifluorenylidene was formed in good yield (89–94%). Cyclopropane formation via a carbenoid reaction with the co-ordinated or free added cyclo-octa-1,5-diene was not observed.

[†] All new nickel complexes gave satisfactory analytical results.

A somewhat different reaction occurred when $Ni(Bu^{t}NC)_{4}$ was treated with $N_2C(CN)_2$ at -78° to -40° in ether when a purple precipitate was formed which changed to yellow on further warming. The yellow crystalline product, [Ni-Bu^tNC)₃C(CN)₂]₂, m.p. 173-175°, was relatively stable in

air. I.r. and n.m.r. spectra showed the presence of terminal and bridging isocyanide ligands in a 2:1 ratio.

(Received, 18th July 1972; Com. 1238.)

¹ J. A. Smith, J. Clemens, M. Green, and F. G. A. Stone, J. Organometallic Chem., 1969, 17, 23; J. Cooke, W. R. Cullen, M. Green, and F. G. A. Stone, J. Chem. Soc. (A), 1969, 1872; K. Matsumoto, Y. Odaira, and S. Tsutsumi, Chem. Comm., 1968, 832; D. S. Wulfman, B. W. Peace, and E. K. Steffen, *ibid.*, 1971, 1360; D. S. Wulfman and B. W. Peace, *ibid.*, 1179; B. W. Peace and D. S. Wulfman, Tetrahedron Letters, 1971, 3799; R. Paulissen, A. J. Hubert, and Ph. Teyssie, *ibid.*, 1972, 1465; W. Kirmse, 'Carbene Chemistry', 2nd edn., Academic Press, New York and London, 1971. ² J. Clemens, R. E. Davis, M. Green, J. D. Oliver, and F. G. A. Stone, Chem. Comm., 1971, 1095. ³ S. Otsuka, T. Yoshida, and Y. Tatsuno, J. Amer. Chem. Soc., 1971, 93, 6462; Chem. Comm., 1971, 67.